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• Introduction and Rationale
• Physical basis of filtering in Macroporous

silicon membranes
• Macroporous Silicon chemistry and

fabrication
• Brief process flow diagram
• ALD coating description
• Experimental results
• Conclusions
• IR and other applications

Outline
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Existing technology
ABSORPTION-BASED

INTERFERENCE-BASED

• Limited width of the rejection bands;

• Poor physical longevity and lack of

    environmental stability (deep UV filters)

• Strong angular dependence of the pass band or

rejection edge position

• Not suitable for deep UV range
•Available materials absorb across entire deep UV
spectrum
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Transmission mechanism through an
uncoated MPSi array

Formulas taken from [I. Avrutsky and V. Kochergin, Appl. Phys. Lett., 82, 3590 (2003)]

1 µm pores
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   Fundamental 
waveguide mode

• Up to 700-900nm- transmission
through the pore leaky waveguide array
• From 700-900nm to ~5Λ –
transmission through the Si host
waveguide array
• 5Λ and above- transmission through an
“effective medium”
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Coated MPSi arrays
 

Si 

Macropore 

Dielectric 

multilayer 

• Leaky mode losses can be selectively
adjusted.

•  High rejection levels are predicted.

• Transmission down to far and extreme
UV is possible.

• Spectral position and shape of pass-
and rejection bands are independent on
angle of incidence.

• Far fewer layers are necessary in order
to achieve a comparable edge sharpness
and rejection level than in common
interference filters.

• Filters are much more environmentally
and thermally stable.
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Design (narrow bandpass filter)

a) b)
 Numerically calculated spectral dependences of the transmission through an
MPSi membrane with a 19-layer pore wall coating designed as a narrow
bandpass filter, with band centered at 300nm. The transmission in a) is plotted
on a linear scale, while in b) is given on a logarithmic scale.
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Lithography
RIE, 

Chemical Etching

Electrochemical
Etching

Opening
of Membrane

Wall CoatingDicingPackaging

Process flowProcess flow
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Porous silicon etching

Interface:
- Porous Silicon
- (Electropolishing can occur)

n-Si: Current limitation by hole supply
Illumination of the silicon is necessary.

Si
HF
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V. Lehmann, H. Föll,
J. Electrochem. Soc., 137, 653 (1990)

V. Lehmann, J. Electrochem. Soc., 140, 
2836 (1994)

Macropores in silicon
• space charge region around macropores 
• photo (or electrical) generation of holes
• holes are minority carriers

hole

SCR

HF

Illumination or current

Porous silicon etching (continuation)
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Multilayer coating of the pore walls
(LPCVD)

LPCVD pore wall coating and SEM images done by
MEMS PI. www.memspi.com

Coating of MPSi
structure is
demonstrated

•Coating is not uniform
•High stresses
•Very limited choice of
materials
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Atomic layer deposition (ALD)
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ALD (continuation)

Several dozens of different coatings
(metals, semiconductor and
dielectrics) have been demonstrated
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Coating uniformity

Good quality layers (granular
structure was not observed)

Better than 5% for Al2O3

HfO2 trials were not successful

82nm
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Nanolaminated stacks and refractive
index engineering
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5-layer TiO2/Al2O3 ALD
coating (ALD)

7-layer TiO2/Al2O3 ALD
coating (ALD)
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Near field transmission efficiency exceeds 50% within the pass
band
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roughness supression
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roughness supression

Far field transmission
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Conclusions

•Pore formation process meet the requirements.

•Feasibility of ALD pore wall coating is demonstrated
for Al2O3 single layer and a Al2O3/TiO2 nanolaminated
stack. Attempts at HfO2 deposition have failed so far. No
functional filter fabricated.

•Good agreement between theory and experiment. Good
understanding of what’s happening and what needs to
be done.

•For further progress, an ALD machine at Lake Shore is
required .
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IR porous mesoporous silicon filters
and mirrors

Consist of a porous silicon
multilayer composed of alternated
high-porosity/low porosity layers.
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IR long wave pass filters

•Random MPSi layers
•Light scattering is the key
•Used as a part of almost any
band-pass filter

Sample 041905
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IR long wave pass filters (continuation)
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